Eigen

Language: CPP

Data

Eigen was created by Gael Guennebaud and Benoit Jacob to provide a fast, flexible, and easy-to-use library for linear algebra in C++. Its template-based design allows for efficient computations at compile-time and runtime. Eigen is highly optimized, supports arbitrary-sized matrices, and integrates seamlessly with other C++ libraries.

Eigen is a high-performance C++ template library for linear algebra, including matrices, vectors, numerical solvers, and related algorithms. It is widely used in scientific computing, machine learning, robotics, and computer graphics.

Installation

linux: sudo apt install libeigen3-dev
mac: brew install eigen
windows: Download from https://gitlab.com/libeigen/eigen and include headers in your project

Usage

Eigen allows defining fixed-size and dynamic-size matrices and vectors, performing arithmetic, solving linear systems, computing eigenvalues, performing decompositions (LU, QR, SVD), and supporting advanced operations like tensor computations.

Defining matrices and vectors

#include <Eigen/Dense>
#include <iostream>
int main() {
    Eigen::Matrix3d mat;
    mat << 1, 2, 3,
           4, 5, 6,
           7, 8, 9;
    Eigen::Vector3d vec(1, 2, 3);
    std::cout << mat << std::endl;
    std::cout << vec << std::endl;
    return 0;
}

Creates a 3x3 matrix and a 3-dimensional vector, initializing them with values and printing them.

Matrix arithmetic

Eigen::Matrix2d A;
A << 1, 2, 3, 4;
Eigen::Matrix2d B;
B << 5, 6, 7, 8;
Eigen::Matrix2d C = A + B;
std::cout << C << std::endl;

Performs element-wise addition of two 2x2 matrices.

Solving linear systems

Eigen::Matrix2d A;
A << 3, 1, 1, 2;
Eigen::Vector2d b(9, 8);
Eigen::Vector2d x = A.colPivHouseholderQr().solve(b);
std::cout << x << std::endl;

Solves a linear system Ax = b using QR decomposition.

Eigenvalues and eigenvectors

Eigen::Matrix2d A;
A << 1, 2, 2, 3;
Eigen::EigenSolver<Eigen::Matrix2d> solver(A);
std::cout << 'Eigenvalues: ' << solver.eigenvalues() << std::endl;
std::cout << 'Eigenvectors: ' << solver.eigenvectors() << std::endl;

Computes eigenvalues and eigenvectors of a 2x2 matrix.

Matrix decompositions

Eigen::Matrix3d A;
A << 1, 2, 3, 0, 1, 4, 5, 6, 0;
Eigen::FullPivLU<Eigen::Matrix3d> lu(A);
std::cout << 'Rank: ' << lu.rank() << std::endl;

Performs LU decomposition and computes the rank of a matrix.

Dynamic-size matrices

Eigen::MatrixXd mat(4,4);
mat.setRandom();
std::cout << mat << std::endl;

Defines a dynamic-size 4x4 matrix and fills it with random values.

Error Handling

Assertion failed: Occurs when matrix dimensions are incompatible. Check that operations are dimensionally correct.
Eigen decomposition fails: Ensure matrices are square when required and check that numerical stability conditions are met.

Best Practices

Use fixed-size matrices for small, performance-critical computations.

Use `.noalias()` when performing chained operations to avoid unnecessary temporaries.

Leverage built-in decompositions (LU, QR, SVD) instead of implementing your own.

Use Eigen’s expression templates for efficient vectorized operations.

Include only necessary headers (Dense, Sparse, LU, etc.) to reduce compilation times.