Language: CPP
Data
Eigen was created by Gael Guennebaud and Benoit Jacob to provide a fast, flexible, and easy-to-use library for linear algebra in C++. Its template-based design allows for efficient computations at compile-time and runtime. Eigen is highly optimized, supports arbitrary-sized matrices, and integrates seamlessly with other C++ libraries.
Eigen is a high-performance C++ template library for linear algebra, including matrices, vectors, numerical solvers, and related algorithms. It is widely used in scientific computing, machine learning, robotics, and computer graphics.
sudo apt install libeigen3-devbrew install eigenDownload from https://gitlab.com/libeigen/eigen and include headers in your projectEigen allows defining fixed-size and dynamic-size matrices and vectors, performing arithmetic, solving linear systems, computing eigenvalues, performing decompositions (LU, QR, SVD), and supporting advanced operations like tensor computations.
#include <Eigen/Dense>
#include <iostream>
int main() {
Eigen::Matrix3d mat;
mat << 1, 2, 3,
4, 5, 6,
7, 8, 9;
Eigen::Vector3d vec(1, 2, 3);
std::cout << mat << std::endl;
std::cout << vec << std::endl;
return 0;
}Creates a 3x3 matrix and a 3-dimensional vector, initializing them with values and printing them.
Eigen::Matrix2d A;
A << 1, 2, 3, 4;
Eigen::Matrix2d B;
B << 5, 6, 7, 8;
Eigen::Matrix2d C = A + B;
std::cout << C << std::endl;Performs element-wise addition of two 2x2 matrices.
Eigen::Matrix2d A;
A << 3, 1, 1, 2;
Eigen::Vector2d b(9, 8);
Eigen::Vector2d x = A.colPivHouseholderQr().solve(b);
std::cout << x << std::endl;Solves a linear system Ax = b using QR decomposition.
Eigen::Matrix2d A;
A << 1, 2, 2, 3;
Eigen::EigenSolver<Eigen::Matrix2d> solver(A);
std::cout << 'Eigenvalues: ' << solver.eigenvalues() << std::endl;
std::cout << 'Eigenvectors: ' << solver.eigenvectors() << std::endl;Computes eigenvalues and eigenvectors of a 2x2 matrix.
Eigen::Matrix3d A;
A << 1, 2, 3, 0, 1, 4, 5, 6, 0;
Eigen::FullPivLU<Eigen::Matrix3d> lu(A);
std::cout << 'Rank: ' << lu.rank() << std::endl;Performs LU decomposition and computes the rank of a matrix.
Eigen::MatrixXd mat(4,4);
mat.setRandom();
std::cout << mat << std::endl;Defines a dynamic-size 4x4 matrix and fills it with random values.
Use fixed-size matrices for small, performance-critical computations.
Use `.noalias()` when performing chained operations to avoid unnecessary temporaries.
Leverage built-in decompositions (LU, QR, SVD) instead of implementing your own.
Use Eigen’s expression templates for efficient vectorized operations.
Include only necessary headers (Dense, Sparse, LU, etc.) to reduce compilation times.